

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

2.3.1 [https://github.com/erwstout/ginger/compare/v2.3.0...v2.3.1] (2020-08-10)

2.3.0 [https://github.com/erwstout/ginger/compare/v2.2.0...v2.3.0] (2020-08-10)

Bug Fixes

	cicd: fix token for NPM_TOKEN (a404cfc [https://github.com/erwstout/ginger/commit/a404cfcf64f2a6192e0381d9dc3e66b0b3ea8e16])

	release: Fix release script (#69 [https://github.com/erwstout/ginger/issues/69]) (ac4cbd7 [https://github.com/erwstout/ginger/commit/ac4cbd75383c6d68273ac7ab057773e2892513b3])

Features

	core: Refactor package structure, remove Gulp (#66 [https://github.com/erwstout/ginger/issues/66]) (abe5d0a [https://github.com/erwstout/ginger/commit/abe5d0ac5a5f7483289427d966448e6ba7834554])

Ginger

[image: _images/GingerHeader.jpg]Ginger Logo

[image: _images/ginger-grid.svg]npm
[image: _images/ginger-grid1.svg]npm bundle size
[image: _images/ginger-grid2.svg]npm
[image: _images/ginger.svg]GitHub stars

Ginger is a minimal flexbox 12 column grid system named after a cute dog. It doesn’t give
you any fancy extras like some other frameworks, but what it does give you is a
solid lightweight grid system to make developing and designing your next site
easy and quick.

Installing Ginger

There are two ways to install Ginger.

Note: as of August 2020, bower is no longer supported

	Clone the repository or download the files to your project

	Install via npm/yarn using npm install ginger-grid --save or yarn add ginger-grid

When setting up the scss file for your project be sure to include the Ginger
settings file before importing ginger.scss. An example scss file may look like this:

// Include Ginger
@import "ginger/settings";
@import "ginger/ginger";

It’s important to note that you may get a compile error if you’re not including
the path to Ginger when compiling your styles.

You can view all the documentation at gingergrid.com [https://gingergrid.com].

Issues / Bugs / Contributions

If you have feedback, find a bug, or want to make contributions, please don’t
hesitate to open an issue or make a pull request.

Special thanks to Allison Perlis [http://allisonperlis.com/] for the rad Ginger
logo!

Block Grids

Ginger also includes classes for creating block grids. These can be helpful when you
don’t necessarily want a list of elements to span columns but create a grid of elements
that are evenly spaced in their parent containers.

Default Alignments

By default a block grid has these flex properties:

$block-grid-flex-direction: row !default;
$block-grid-justify-content: space-between !default;
$block-grid-align-items: flex-start !default;
$block-grid-flex-wrap: wrap !default;

You can overwrite the block grid’s justify-content property by simply adding a helper class:

.block-grid--justify-content-center
.block-grid--justify-content-start
.block-grid--justify-content-end
.block-grid--justify-content-space-around

Changing Block Grid Count For Viewports & Usage Example

The number of items in the grid can change for other viewports by simply adding
an additional class to to. For instance, if we wanted our block grid to be 4 items
per row on large screens and wrap to 1 item per row on small devices it would look like this:

<div class="sm-block-grid-1 block-grid-4">
 <div class="col">
 <!-- content -->
 </div>
 <div class="col">
 <!-- content -->
 </div>
 <div class="col">
 <!-- content -->
 </div>
 <div class="col">
 <!-- content -->
 </div>
</div>

Columns

Columns are the bread and butter of Ginger and should hold your content. Columns
follow an easy naming convention of col-# where you can specify how many columns
this element should span. So for a 4 column element you would use .col-4 and for
a 12 col element you would use .col-12, and so on… Ginger works “large down”
meaning, an element with a class of .col-6 will remain 6 columns until the $small-breakpoint
is hit, then expand to 12 columns, unless a sm-col- class is declared. You may
also use md-col- classes to change the column count for those “in-between” views
as well as declared by the $medium-breakpoint value.

Usage Examples

Below you can find an example layout of a page with a sidebar and content area.

<section class="container">
 <div class="row">
 <aside id="sidebar" class="col-4">
 ... side bar content ..
 </aside>
 <article class="col-8">
 ... article content ...
 </article>
 </div>
</section>

Another common usage would be a 10 column layout centered in the middle of the page.
The .col-centered class is covered lower down on this page.

<section class="container">
 <div class="row">
 <div class="col-10 col-centered">
 ... content ...
 </div>
 </div>
</section>

Column Counts for Different Breakpoints

Since Ginger allows you to set both a $medium-breakpoint and a $small-breakpoint
you can change your column count based on the screen size. So for example, on larger
(usually desktop) devices, you may want a 10 column layout but on medium devices
you may need to drop to 8 by using md-col-#, and on small you may need to drop to 4 by using sm-col-#. This would be
achieved by using:

<div class="col-10 md-col-8 sm-col-4">
 ...
</div>

Column Extras!

Columns don’t have the amount of overrides containers and rows have since in
most cases they are children elements, but they do have a few extras to help dial
in your layout.

Centering A Column (.col-centered)

It’s common for a column to be centered in the middle of the row such as the
example above. This can easily be achieved by adding the class col-centered to
a column. For instance:

<div class="col-10 col-centered">
 ... code here ...
</div>

Text Alignment

You can easily adjust the text-align property for an entire column by using
text alignment classes. There are three options available:

	.text-left

	.text-center

	.text-right

In practice this would look something like this:

<div class="col-4 text-right">
 ... content that is right aligned ...
</div>

No Padding (.col-no-pad)

In some cases you may want to get rid of the column padding (gutter). This can easily
be achieved by using a class of .col-no-pad. You can also adjust these by breakpoints,
such as .sm-col-no-pad.

<div class="col-7 col-no-pad">
 ...
</div>

Column Growing (.col-grow)

By default, a column has a flex property of flex: 0 1 $flex-basis. Adding a class of
.col-grow allows a column to grow (flex: 1 1 $flex-basis) when it rolls to a new line.
This can help you achieve a layout where an orphaned column rolls, it takes up the
entire width of the parent row. Usage:

<div class="col-3 col-grow">
 ...
</div>

Push Column Right (.col-right)

In some cases it might be useful to push a column to the far right of a row. This can
be achieved multiple ways (one of which is by changing the row justify-content property)
or by simply adding the class of .col-right to a column.

Example:

<div class="col-4 col-right">
 ...
</div>

Column Stretching

There are plenty of times where columns need to match each other in height, but
the content of each column will vary leaving one column shorter than the other.
You can easily tell columns to stretch to match its sibling columns by adding a class
of .stretch to them. This is very useful in block-grid elements.

Example:

<div class="col-5 stretch">
 ...
</div>

Containers

Ginger requires that your rows be wrapped in a .container element. This is to
ensure that your rows can properly flex based on their flex values and gives you
ultimate control over your layouts.

You can add the .container class wherever you like as long as your rows are
direct children.

Usage Examples

Each section on the page is a container:

<section id="example-intro" class="container">
 <div class="row">
 <!-- columns, content, etc -->
 </div>
</section>
<section id="example-copy" class="container">
 <div class="row">
 <!-- columns, content, etc -->
 </div>
</section>

Entire body class as a container:

<body class="container">
 <section class="row">
 <!-- columns, content, etc -->
 </section>
</body>

Defaults and Overrides

Max Width

Containers by default have a max width of 100%, but a different value can be set via settings
inside the $container-max-width variable.

Default Flex Values

Also by default, containers have the following flex values:

$flex-wrap: nowrap !default;
$flex-direction: column !default;
$justify-content: flex-start !default;
$align-items: center !default;
$align-content: flex-start !default;

Additionally, Ginger allows you to specify framework options by attaching helper
classes to the container element.

Classes available for override are:

	.container--wrap

	Allow container rows to wrap

	.container--direction-row

	Changes container flex-direction direction from column to row

	.container--justify-content-center

	Justifies the rows into the vertical center of the container

	.container--justify-content-end

	Justifies the rows to the bottom of the container

	.container--justify-content-space-between

	Justifies the rows in the container to use space-between

	.container--justify-content-space-around

	Justifies the rows in the container to use space-around

	.container--align-items-start

	Aligns rows in the container to start of the element

	.container--align-items-end

	Aligns rows in the container to end of the element

	.container--align-items-baseline

	Aligns rows in the container to baseline of the element

	.container--align-items-stretch

	Aligns rows in the container to stretch

	.container--align-content-center

	.container--align-content-end

	.container--align-content-space-between

	.container--align-content-space-around

	.container--align-content-stretch

Override Example Usage

For example, if you wanted the container to justify the content in the center of
the container your element would look like this:

<div class="container container--justify-content-center">
 ...
</div>

Extras

Here are a collection of tools/classes that help aid development of your site or theme.

Text Alignment

Easily set text alignments for elements.

	text-left

	text-center

	text-right

Adjusting For Viewports

You can adjust text alignments for viewports as well.

	md-text-left

	md-text-center

	md-text-right

	sm-text-left

	sm-text-center

	sm-text-right

Usage Example

<div class="col-10 text-center sm-text-left">
 <!-- Content -->
</div>

Column Centering

If you wish to center a column in its row, you can do so by adding col-centered. You can also do this for a certain viewport as well.

Usage Examples

<!-- Centered on Large Viewport -->
<div class="col-4 col-centered">
 <!-- Content -->
</div>

<!-- Centered on Medium Viewport -->
<div class="col-4 md-col-centered">
 <!-- Content -->
</div>

<!-- Centered on Small Viewport -->
<div class="col-6 sm-col-centered">
 <!-- Content -->
</div>

Column - Push Right

You can push a column to the right as well, but it you may be better off using a row helper class of row--justify-content-end instead… but just in case it’s
here for you.

Usage Example

<div class="col-6 col-right">
 <!-- Content -->
</div>

Stretching Columns

Stretching columns can come in handy quite often. This will stretch a column so
that it is the same height as its siblings.

Usage Example

<div class="col-6 stretch">
 <!-- Content -->
</div>
<div class="col-6 stretch">
 <!-- Content -->
</div>

 There are three ways to install Ginger.

	Clone the repository or download the files to your project

	Install via bower using bower install ginger-grid --save

	Install via npm using npm install ginger-grid --save

When setting up the scss file for your project be sure to include the Ginger
settings file before importing ginger.scss. An example scss file may look like this:

// Include Ginger
@import "ginger/settings";
@import "ginger/ginger";

It’s important to note that you may get a compile error if you’re not including
the path to Ginger when compiling your styles.

Offsets

Ginger has offset classes that are useful for offsetting columns in a row. For
instance if you want to offset an element by 2 columns you would just apply a class
of offset-2. Offset classes only apply to the medium and large viewports.

Usage Example

<div class="row">
 <div class="col-3 offset-3">
 <!-- Offset Column by 3 -->
 </div>
</div>

Rows

Rows hold your columns and are crucial to the layout of your site. Rows are required
to be a direct child of a container or else they may not flex or behave as expected
with one exception being nested rows, which is covered below.

Usage Examples

As mentioned, rows should be a direct child of a container element. An practical
example would look something like this:

<section id="example-intro" class="container">
 <div class="row">
 <!-- columns, content, etc -->
 </div>
</section>
<section id="example-copy" class="container">
 <div class="row">
 <!-- columns, content, etc -->
 </div>
</section>

Defaults and Overrides

By default, rows have the following flex values:

$row-flex-wrap: wrap !default;
$row-flex-direction: row !default;
$row-justify-content: space-between !default;
$row-align-items: flex-start !default;
$row-align-content: flex-start !default;

Max Width

Rows have a max-width of 75em by default, that can be overridden in the Ginger
_settings file, or with the use of a row--full-width helper class which will
be covered below.

Overrides and Helper Classes

Similar to containers, rows also have a set of helper classes available to you
to have even more control over your layouts.

These helper classes are as follows:

	.row--full-width

	Allows the row to be 100% wide

	.row--no-wrap

	Stops the row’s columns from wrapping

	.row--reverse

	Reverses the order of the row’s columns

	.row--justify-content-center

	Justifies all columns to the center of the row

	.row--justify-content-start

	Justifies all columns to the start of the row

	.row--justify-content-end

	Justifies all columns to the end of the row

	.row--justify-content-space-around

	Justifies all columns with the space-around flex value

	.row--align-items-start

	Aligns items (columns) to the top of each other

	.row--align-items-center

	Aligns items (columns) to their centers

	.row--align-items-end

	Aligns items (columns) to the bottom of each other

	.row--align-items-baseline

	Aligns items (columns) to their baselines

	.row--align-items-stretch

	Stretch all items (columns) to the same height

	.row--align-content-center

	Align columns to the center when they wrap

	.row--align-content-end

	Align columns to their ends when they wrap

	.row--align-content-space-between

	Align columns using space-between when they wrap

	.row--align-content-space-around

	Align columns using space-around when they wrap

	.row--align-content-stretch

	Align columns using stretch when they wrap

Override Usage Example

<div class="row row--justify-content-center">
 ...
</div>

Nested Rows

As mentioned, rows should be a direct child of a container element unless the
row is being nested inside another.

A typical example of a nested row is:

<div class="container">
 <div class="row">
 <div class="col-6">
 <div class="row">
 ...
 </div>
 </div>
 </div>
</div>

Ginger Settings

Ginger uses a simple settings file aptly named _settings.scss in the settings/
folder so you can easily adjust the framework. It is a best practice to copy this
file into your project and edit the values there. This will save your changes from
being overridden in the event of a Ginger update. No settings are imported by default.

Important: Be sure to import the _settings.scss file before _ginger.scss or else your sass compile will fail.

Container Max Width ($container-max-width)

This variable controls the maximum width a container can have. It has a default
value of 100% but can be changed to any value and has no restrictions on the values.
It can be a percentage, px, em, rem, etc…

Row Max Width ($row-max-width)

The $row-max-width variable controls the maximum width a row can be. It has a
default value of 75rem but can be changed to any value and has no restrictions
on the values. It can be a percentage, px, em, rem, etc…

Block Grid Max Number ($max-block-grid)

The $max-block-grid variable controls the highest number of block-grid columns
you can have. By default it is set to 12.

Column Padding ($col-padding)

The $col-padding variable controls the padding (or gutter) inside the columns.
By default it is 0.80rem.

Flex Basis ($flex-basis)

The $flex-basis variable controls the default flex-basis value of columns. By
default it is set to auto and would very rarely get changed at a global level, but it’s there just
for complete customization.

Medium Breakpoint ($medium-breakpoint)

The $medium-breakpoint variable controls the viewport size that should be used
when switching to a medium screen. This is always used as a max-width value in
Ginger media queries and covers from the small-breakpoint to the value of the
medium-breakpoint. This value must be a rem or em.

By default, $medium-breakpoint is set to 64em.

Small Breakpoint ($small-breakpoint)

The $small-breakpoint variable controls the viewport size that should be used
when switching to a small screen. This is always used as a max-width value in
Ginger. This covers all screen sizes from 0px up to the declared value of
$small-breakpoint. This value must be a rem or em.

By default, $small-breakpoint is set to 43em.

Visibility Classes

Ginger has a few visibility classes out of the box to help you hide or show elements based on viewport sizes. These sizes are determined by the variables set for $medium-breakpoint and $small-breakpoint.

Available Classes

	hide - hide element on all viewports

	lg-only - only displays the element on large viewports (above $medium-breakpoint)

	md-only - only displays the element on medium viewports

	sm-only - only displays the element on small viewports

	md-hide-down - hides the element starting from the medium viewport down to the small viewport

	md-hide - hides the element only for medium viewports

	sm-hide - hides the element for small viewports

<!-- Show on small only -->
<div class="sm-only">
 This appears on small viewports only
</div>

<!-- Show on medium only -->
<div class="md-only">
 This appears on medium viewports only
</div>

<!-- Show on large only -->
<div class="lg-only">
 This appears on large viewports only
</div>

Visibility Helpers

Visibility classes allow you to control the display property. By default all classes are display: flex. Using these helpers you can quickly change the display property. Here is an example from lg-only:

// Class as seen in components/_visibility.scss

.lg-only {
 display: flex !important;
 &--block {
 display: block !important;
 }
 &--inline-block {
 display: inline-block !important;
 }
 &--inline-flex {
 display: inline-flex !important;
 }
}

Usage Example:

<div class="lg-only--block">
 <!-- Content -->
</div>

 _static/comment-close.png

_static/comment.png

_static/comment-bright.png

_static/file.png

_static/down-pressed.png

_static/down.png

_static/minus.png

_static/plus.png

_static/ajax-loader.gif

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_images/GingerHeader.jpg

_static/up-pressed.png

_static/up.png

